Building Neural Network Models for Time Series: A Statistical Approach
نویسندگان
چکیده
This paper is concerned with modelling time series by single hidden layer feedforward neural network models. A coherent modelling strategy based on statistical inference is presented. Variable selection is carried out using simple existing techniques. The problem of selecting the number of hidden units is solved by sequentially applying Lagrange multiplier type tests, with the aim of avoiding the estimation of unidentified models. Misspecification tests are derived for evaluating an estimated neural network model. All the tests are entirely based on auxiliary regressions and are easily implemented. A smallsample simulation experiment is carried out to show how the proposed modelling strategy works and how the misspecification tests behave in small samples. Two applications to real time series, one univariate and the other multivariate, are considered as well. Sets of one-step-ahead forecasts are constructed and forecast accuracy is compared with that of other nonlinear models applied to the same series. Copyright © 2006 John Wiley & Sons, Ltd. key words model misspecification; neural computing; nonlinear forecasting; nonlinear time series; smooth transition autoregression
منابع مشابه
Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملAvailability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models
In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...
متن کاملApplication of artificial neural network (ANN) for the prediction of water treatment plant influent characteristics
Application of a reliable forecasting model for any water treatment plant (WTP) is essential in order to provide a tool for predicting influent water quality and to form a basis for controlling the operation of the process. This would minimize the operation and analysis costs, and assess the stability of WTP performances. This paper focuses on applying an artificial neural network (ANN) approac...
متن کاملPrediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کاملپیش بینی پارامترهای کیفی (NO3 ,DO) رودخانه کرج با استفاده از مدل های ANN، MLR و تلفیق شبکه عصبی-موجکی بر پایه نویززدایی
Background & Objectives: The prediction and quality control of the Karaj River water, as one of the important needed water supply sources of Tehran, possesses great importance. In this study, performance of artificial neural network (ANN), combined wavelet-neural network (WANN), and multi linear regression (MLR) models were evaluated to predict next month nitrate and dissolved oxygen of “Pole K...
متن کاملVehicle's velocity time series prediction using neural network
This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the results of this study are co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005